Eli Brown Eli Brown
0 Course Enrolled • 0 Course CompletedBiography
Databricks Databricks-Generative-AI-Engineer-Associateソフトウエア、Databricks-Generative-AI-Engineer-Associate資格参考書
BONUS!!! Pass4Test Databricks-Generative-AI-Engineer-Associateダンプの一部を無料でダウンロード:https://drive.google.com/open?id=12OQlZ_elJGgSMmPTxuvUSQki9W24GRDM
難しいIT認証試験に受かることを選んだら、頑張って準備すべきです。Pass4TestのDatabricksのDatabricks-Generative-AI-Engineer-Associate試験トレーニング資料はIT認証試験に受かる最高の資料で、手に入れたら成功への鍵を持つようになります。Pass4TestのDatabricksのDatabricks-Generative-AI-Engineer-Associate試験トレーニング資料は信頼できるもので、100パーセントの合格率を保証します。
この不安の時代には、誰もが大きなプレッシャーを感じているようです。あなたがより良いなら、あなたはよりリラックスした生活を送るでしょう。 Databricks-Generative-AI-Engineer-Associateガイド資料を使用すると、作業の効率を高めることができます。他のことにもっと時間をかけることができます。教材を使用すると、最短時間でDatabricks-Generative-AI-Engineer-Associate試験に合格できます。あなたは他の人よりも高い出発点に立っています。なぜDatabricks-Generative-AI-Engineer-Associateの練習問題が選択に値するのですか? Databricks-Generative-AI-Engineer-Associate試験問題のデモを無料でダウンロードして、Databricks-Generative-AI-Engineer-Associate学習教材の利点をご理解いただければ幸いです。
>> Databricks Databricks-Generative-AI-Engineer-Associateソフトウエア <<
試験の準備方法-高品質なDatabricks-Generative-AI-Engineer-Associateソフトウエア試験-信頼的なDatabricks-Generative-AI-Engineer-Associate資格参考書
DatabricksのDatabricks-Generative-AI-Engineer-Associate試験に関する権威のある学習教材を見つけないで、悩んでいますか?世界中での各地の人々はほとんどDatabricksのDatabricks-Generative-AI-Engineer-Associate試験を受験しています。DatabricksのDatabricks-Generative-AI-Engineer-Associateの認証試験の高品質の資料を提供しているユニークなサイトはPass4Testです。もし君はまだ心配することがあったら、私たちのDatabricksのDatabricks-Generative-AI-Engineer-Associate問題集を購入する前に、一部分のフリーな試験問題と解答をダンロードして、試用してみることができます。
Databricks Databricks-Generative-AI-Engineer-Associate 認定試験の出題範囲:
トピック | 出題範囲 |
---|---|
トピック 1 |
|
トピック 2 |
|
トピック 3 |
|
Databricks Certified Generative AI Engineer Associate 認定 Databricks-Generative-AI-Engineer-Associate 試験問題 (Q27-Q32):
質問 # 27
A Generative AI Engineer I using the code below to test setting up a vector store:
Assuming they intend to use Databricks managed embeddings with the default embedding model, what should be the next logical function call?
- A. vsc.create_delta_sync_index()
- B. vsc.create_direct_access_index()
- C. vsc.similarity_search()
- D. vsc.get_index()
正解:A
解説:
Context: The Generative AI Engineer is setting up a vector store using Databricks' VectorSearchClient. This is typically done to enable fast and efficient retrieval of vectorized data for tasks like similarity searches.
Explanation of Options:
* Option A: vsc.get_index(): This function would be used to retrieve an existing index, not create one, so it would not be the logical next step immediately after creating an endpoint.
* Option B: vsc.create_delta_sync_index(): After setting up a vector store endpoint, creating an index is necessary to start populating and organizing the data. The create_delta_sync_index() function specifically creates an index that synchronizes with a Delta table, allowing automatic updates as the data changes. This is likely the most appropriate choice if the engineer plans to use dynamic data that is updated over time.
* Option C: vsc.create_direct_access_index(): This function would create an index that directly accesses the data without synchronization. While also a valid approach, it's less likely to be the next logical step if the default setup (typically accommodating changes) is intended.
* Option D: vsc.similarity_search(): This function would be used to perform searches on an existing index; however, an index needs to be created and populated with data before any search can be conducted.
Given the typical workflow in setting up a vector store, the next step after creating an endpoint is to establish an index, particularly one that synchronizes with ongoing data updates, henceOption B.
質問 # 28
A team wants to serve a code generation model as an assistant for their software developers. It should support multiple programming languages. Quality is the primary objective.
Which of the Databricks Foundation Model APIs, or models available in the Marketplace, would be the best fit?
- A. Llama2-70b
- B. MPT-7b
- C. BGE-large
- D. CodeLlama-34B
正解:D
解説:
For a code generation model that supports multiple programming languages and where quality is the primary objective,CodeLlama-34Bis the most suitable choice. Here's the reasoning:
* Specialization in Code Generation:CodeLlama-34B is specifically designed for code generation tasks.
This model has been trained with a focus on understanding and generating code, which makes it particularly adept at handling various programming languages and coding contexts.
* Capacity and Performance:The "34B" indicates a model size of 34 billion parameters, suggesting a high capacity for handling complex tasks and generating high-quality outputs. The large model size typically correlates with better understanding and generation capabilities in diverse scenarios.
* Suitability for Development Teams:Given that the model is optimized for code, it will be able to assist software developers more effectively than general-purpose models. It understands coding syntax, semantics, and the nuances of different programming languages.
* Why Other Options Are Less Suitable:
* A (Llama2-70b): While also a large model, it's more general-purpose and may not be as fine- tuned for code generation as CodeLlama.
* B (BGE-large): This model may not specifically focus on code generation.
* C (MPT-7b): Smaller than CodeLlama-34B and likely less capable in handling complex code generation tasks at high quality.
Therefore, for a high-quality, multi-language code generation application,CodeLlama-34B(option D) is the best fit.
質問 # 29
A Generative Al Engineer is building a system which will answer questions on latest stock news articles.
Which will NOT help with ensuring the outputs are relevant to financial news?
- A. Incorporate manual reviews to correct any problematic outputs prior to sending to the users
- B. Implement a comprehensive guardrail framework that includes policies for content filters tailored to the finance sector.
- C. Increase the compute to improve processing speed of questions to allow greater relevancy analysis C Implement a profanity filter to screen out offensive language
正解:C
解説:
In the context of ensuring that outputs are relevant to financial news, increasing compute power (option B) does not directly improve therelevanceof the LLM-generated outputs. Here's why:
* Compute Power and Relevancy:Increasing compute power can help the model process inputs faster, but it does not inherentlyimprove therelevanceof the answers. Relevancy depends on the data sources, the retrieval method, and the filtering mechanisms in place, not on how quickly the model processes the query.
* What Actually Helps with Relevance:Other methods, like content filtering, guardrails, or manual review, can directly impact the relevance of the model's responses by ensuring the model focuses on pertinent financial content. These methods help tailor the LLM's responses to the financial domain and avoid irrelevant or harmful outputs.
* Why Other Options Are More Relevant:
* A (Comprehensive Guardrail Framework): This will ensure that the model avoids generating content that is irrelevant or inappropriate in the finance sector.
* C (Profanity Filter): While not directly related to financial relevancy, ensuring the output is clean and professional is still important in maintaining the quality of responses.
* D (Manual Review): Incorporating human oversight to catch and correct issues with the LLM's output ensures the final answers are aligned with financial content expectations.
Thus, increasing compute power does not help with ensuring the outputs are more relevant to financial news, making option B the correct answer.
質問 # 30
A Generative AI Engineer is building a RAG application that will rely on context retrieved from source documents that are currently in PDF format. These PDFs can contain both text and images. They want to develop a solution using the least amount of lines of code.
Which Python package should be used to extract the text from the source documents?
- A. unstructured
- B. beautifulsoup
- C. numpy
- D. flask
正解:B
解説:
* Problem Context: The engineer needs to extract text from PDF documents, which may contain both text and images. The goal is to find a Python package that simplifies this task using the least amount of code.
* Explanation of Options:
* Option A: flask: Flask is a web framework for Python, not suitable for processing or extracting content from PDFs.
* Option B: beautifulsoup: Beautiful Soup is designed for parsing HTML and XML documents, not PDFs.
* Option C: unstructured: This Python package is specifically designed to work with unstructured data, including extracting text from PDFs. It provides functionalities to handle various types of content in documents with minimal coding, making it ideal for the task.
* Option D: numpy: Numpy is a powerful library for numerical computing in Python and does not provide any tools for text extraction from PDFs.
Given the requirement,Option C(unstructured) is the most appropriate as it directly addresses the need to efficiently extract text from PDF documents with minimal code.
質問 # 31
A Generative AI Engineer is building an LLM to generate article summaries in the form of a type of poem, such as a haiku, given the article content. However, the initial output from the LLM does not match the desired tone or style.
Which approach will NOT improve the LLM's response to achieve the desired response?
- A. Provide the LLM with a prompt that explicitly instructs it to generate text in the desired tone and style
- B. Include few-shot examples in the prompt to the LLM
- C. Fine-tune the LLM on a dataset of desired tone and style
- D. Use a neutralizer to normalize the tone and style of the underlying documents
正解:D
解説:
The task at hand is to improve the LLM's ability to generate poem-like article summaries with the desired tone and style. Using aneutralizerto normalize the tone and style of the underlying documents (option B) will not help improve the LLM's ability to generate the desired poetic style. Here's why:
* Neutralizing Underlying Documents:A neutralizer aims to reduce or standardize the tone of input data. However, this contradicts the goal, which is to generate text with aspecific tone and style(like haikus). Neutralizing the source documents will strip away the richness of the content, making it harder for the LLM to generate creative, stylistic outputs like poems.
* Why Other Options Improve Results:
* A (Explicit Instructions in the Prompt): Directly instructing the LLM to generate text in a specific tone and style helps align the output with the desired format (e.g., haikus). This is a common and effective technique in prompt engineering.
* C (Few-shot Examples): Providing examples of the desired output format helps the LLM understand the expected tone and structure, making it easier to generate similar outputs.
* D (Fine-tuning the LLM): Fine-tuning the model on a dataset that contains examples of the desired tone and style is a powerful way to improve the model's ability to generate outputs that match the target format.
Therefore, using a neutralizer (option B) isnotan effective method for achieving the goal of generating stylized poetic summaries.
質問 # 32
......
日常生活の低生産性と低効率にまだ圧倒されていますか?答えが「はい」の場合、Databricks-Generative-AI-Engineer-Associateガイド急流に注意してください。バランスのとれた一流のサービスを提供するため、夢のDatabricks-Generative-AI-Engineer-Associate証明書を取得し、希望の職業に就くことができます。当社の製品にはいくつかの主要な機能があり、Databricks-Generative-AI-Engineer-Associateテストの質問に満足していただけると信じています。そして、Databricks-Generative-AI-Engineer-Associate試験問題を一度試してみると、きっと気に入るはずです。
Databricks-Generative-AI-Engineer-Associate資格参考書: https://www.pass4test.jp/Databricks-Generative-AI-Engineer-Associate.html
- Databricks-Generative-AI-Engineer-Associate日本語版テキスト内容 🖤 Databricks-Generative-AI-Engineer-Associate専門知識内容 😾 Databricks-Generative-AI-Engineer-Associate対策学習 🗨 ⇛ www.xhs1991.com ⇚にて限定無料の✔ Databricks-Generative-AI-Engineer-Associate ️✔️問題集をダウンロードせよDatabricks-Generative-AI-Engineer-Associate学習指導
- Databricks-Generative-AI-Engineer-Associate学習教材 👐 Databricks-Generative-AI-Engineer-Associate専門知識 🦸 Databricks-Generative-AI-Engineer-Associate日本語独学書籍 📪 Open Webサイト▛ www.goshiken.com ▟検索“ Databricks-Generative-AI-Engineer-Associate ”無料ダウンロードDatabricks-Generative-AI-Engineer-Associate日本語版
- Databricks-Generative-AI-Engineer-Associate問題集無料 🐃 Databricks-Generative-AI-Engineer-Associate専門知識 ➕ Databricks-Generative-AI-Engineer-Associate問題集無料 🪂 【 www.pass4test.jp 】に移動し、➤ Databricks-Generative-AI-Engineer-Associate ⮘を検索して、無料でダウンロード可能な試験資料を探しますDatabricks-Generative-AI-Engineer-Associate試験合格攻略
- Databricks-Generative-AI-Engineer-Associate学習教材 🐛 Databricks-Generative-AI-Engineer-Associate関連復習問題集 🔅 Databricks-Generative-AI-Engineer-Associate専門知識 👿 Open Webサイト[ www.goshiken.com ]検索➠ Databricks-Generative-AI-Engineer-Associate 🠰無料ダウンロードDatabricks-Generative-AI-Engineer-Associate過去問無料
- Databricks Databricks-Generative-AI-Engineer-Associateソフトウエア: Databricks Certified Generative AI Engineer Associate - www.it-passports.com 信頼できるプロバイダ 😷 今すぐ➤ www.it-passports.com ⮘で▛ Databricks-Generative-AI-Engineer-Associate ▟を検索して、無料でダウンロードしてくださいDatabricks-Generative-AI-Engineer-Associate難易度受験料
- Databricks-Generative-AI-Engineer-Associate日本語版 💛 Databricks-Generative-AI-Engineer-Associate過去問題 🥳 Databricks-Generative-AI-Engineer-Associate専門トレーリング 🏮 ⏩ www.goshiken.com ⏪で使える無料オンライン版▶ Databricks-Generative-AI-Engineer-Associate ◀ の試験問題Databricks-Generative-AI-Engineer-Associate学習指導
- Databricks-Generative-AI-Engineer-Associate最新テスト 🥅 Databricks-Generative-AI-Engineer-Associate学習指導 🏀 Databricks-Generative-AI-Engineer-Associate日本語版 🐅 ( www.passtest.jp )に移動し、➥ Databricks-Generative-AI-Engineer-Associate 🡄を検索して、無料でダウンロード可能な試験資料を探しますDatabricks-Generative-AI-Engineer-Associate関連復習問題集
- Databricks-Generative-AI-Engineer-Associate日本語版テキスト内容 🥌 Databricks-Generative-AI-Engineer-Associate専門知識内容 💍 Databricks-Generative-AI-Engineer-Associate最新テスト 🍶 ▶ www.goshiken.com ◀で▷ Databricks-Generative-AI-Engineer-Associate ◁を検索し、無料でダウンロードしてくださいDatabricks-Generative-AI-Engineer-Associate日本語認定対策
- Databricks-Generative-AI-Engineer-Associate試験合格攻略 🚃 Databricks-Generative-AI-Engineer-Associate日本語認定対策 👼 Databricks-Generative-AI-Engineer-Associate日本語認定対策 🙋 ▶ www.it-passports.com ◀は、[ Databricks-Generative-AI-Engineer-Associate ]を無料でダウンロードするのに最適なサイトですDatabricks-Generative-AI-Engineer-Associate日本語認定対策
- Databricks-Generative-AI-Engineer-Associate学習教材 🤿 Databricks-Generative-AI-Engineer-Associate過去問無料 🥗 Databricks-Generative-AI-Engineer-Associate日本語版テキスト内容 ℹ 検索するだけで☀ www.goshiken.com ️☀️から⏩ Databricks-Generative-AI-Engineer-Associate ⏪を無料でダウンロードDatabricks-Generative-AI-Engineer-Associate日本語認定対策
- Databricks-Generative-AI-Engineer-Associate試験合格攻略 🏂 Databricks-Generative-AI-Engineer-Associate問題集無料 🥗 Databricks-Generative-AI-Engineer-Associate専門知識 🛬 ( www.goshiken.com )に移動し、《 Databricks-Generative-AI-Engineer-Associate 》を検索して無料でダウンロードしてくださいDatabricks-Generative-AI-Engineer-Associate学習教材
- www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, carolai.com, fulcrumcourses.com, www.stes.tyc.edu.tw, kci.com.kw, www.stes.tyc.edu.tw
BONUS!!! Pass4Test Databricks-Generative-AI-Engineer-Associateダンプの一部を無料でダウンロード:https://drive.google.com/open?id=12OQlZ_elJGgSMmPTxuvUSQki9W24GRDM